
Gene regulation

decoupleR: ensemble of computational methods to infer

biological activities from omics data
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Abstract

Summary: Many methods allow us to extract biological activities from omics data using information from prior
knowledge resources, reducing the dimensionality for increased statistical power and better interpretability. Here,
we present decoupleR, a Bioconductor and Python package containing computational methods to extract these
activities within a unified framework. decoupleR allows us to flexibly run any method with a given resource, includ-
ing methods that leverage mode of regulation and weights of interactions, which are not present in other frame-
works. Moreover, it leverages OmniPath, a meta-resource comprising over 100 databases of prior knowledge. Using
decoupleR, we evaluated the performance of methods on transcriptomic and phospho-proteomic perturbation
experiments. Our findings suggest that simple linear models and the consensus score across top methods perform
better than other methods at predicting perturbed regulators.

Availability and implementation: decoupleR’s open-source code is available in Bioconductor (https://www.bio
conductor.org/packages/release/bioc/html/decoupleR.html) for R and in GitHub (https://github.com/saezlab/
decoupler-py) for Python. The code to reproduce the results is in GitHub (https://github.com/saezlab/decoupleR_
manuscript) and the data in Zenodo (https://zenodo.org/record/5645208).

Contact: pub.saez@uni-heidelberg.de

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Omics datasets, such as transcriptomics or phospho-proteomics,
provide unbiased high-dimensional molecular profiles. However,
their big dimensionality, combined with the highly connected nature
of the molecules that are measured, makes it difficult to interpret
them in a mechanistically relevant manner. Leveraging prior know-
ledge, we can use computational methods to infer which biological
activities are relevant. For example, the activity of transcription fac-
tors (TFs) and kinases can be inferred robustly from downstream
transcripts and phosphosite targets, respectively (Dugourd and Saez-
Rodriguez, 2019). Over the past decade, a plethora of methods that
infer biological activity has emerged, each with its own assumptions
and biases.

Although comparisons and collections of these methods exist
(Alhamdoosh et al., 2017; Geistlinger et al., 2016; Väremo et al.,

2013; Supplementary Table S1), they do not incorporate recent
methodological developments, such as modeling activities based on
weighted mode of regulation (Supplementary Table S2). Here, we
present decoupleR, an R and Python package containing a collection
of methods adapted for biological activity estimation in bulk, single-
cell and spatial omics data.

2 Implementation

Currently, decoupleR contains 11 different methods (Fig. 1A), these
include popular methods such as AUCell (Aibar et al., 2017), fast
GSEA (Korotkevich et al., 2021), GSVA (Hänzelmann et al., 2013),
over-representation analysis, univariate linear model (ULM)
adapted from Teschendorff and Wang (2020), VIPER (Alvarez
et al., 2016) and others (Supplementary Table S1). The inputs of
decoupleR are: (i) a matrix containing molecular feature values,
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either for single samples or from population comparisons, like nor-
malized gene expression counts per sample or log fold changes and
(ii) a prior knowledge resource such as a collection of gene sets. The
user can then choose any method alone or many simultaneously.
decoupleR also provides a consensus score obtained by computing a
mean z-score across methods (Supplementary Note). Additionally,
decoupleR offers easy to use wrappers to query the meta-database
OmniPath (Türei et al., 2021), making it easy to flexibly access
processed resources such as cell-type marker databases, gene regula-
tory networks or pathway footprints, and estimate biological activ-
ities from them.

3 Benchmark design

We used decoupleR to evaluate the performance of individual meth-
ods by recovering perturbed regulators—TFs and kinases—from
two independent collections of transcriptomics (Holland et al.,
2020) and phospho-proteomics (Hernandez-Armenta et al., 2017)
datasets (Supplementary Note), respectively, upon single-gene per-
turbation experiments. As resources, we used the gene regulatory
network DoRothEA (Garcia-Alonso et al., 2019) and a kinase sub-
strate network (Hernandez-Armenta et al., 2017), respectively.

We built a benchmarking pipeline with decoupleR (Supplementary
Note), which evaluates the performance of regulator activity scores
from different methods, mainly focused on the sensitivity of methods.
Furthermore, to evaluate the robustness of the methods to noise, we
added or deleted a percentage of edges from the prior knowledge
resources.

4 Results

Methods return different distributions of activities (Supplementary
Fig. S1) but display general similarities (Supplementary Fig. S2),
with a median Spearman correlation of activities between methods
of 0.52, and 0.65 for transcriptomics and phospho-proteomics, re-
spectively (Fig. 1B). There was also a moderate agreement between
methods in the top 5% ranked regulators (median Jaccard indexes
of 0.23 and 0.21, respectively; Supplementary Fig. S2).

Despite these similarities, methods showed different perform-
ances at predicting perturbed regulators (Supplementary Fig. S3).
Some of them performed consistently better than the others

(Supplementary Table S3; Fig. 1C), the top three being: consen-
sus, multivariate linear model and ULM. Moreover, methods that
leverage weights perform better when those are taken into ac-
count (P-value <2.2e-16; one-sided Wilcoxon signed-rank test;
Supplementary Fig. S4).

Deleting edges in the resource had a greater effect than adding
them across methods (Supplementary Fig. S5); with a median
Spearman correlation of activities to the original ones of 0.84 and
0.77 for the addition and deletion, respectively (P-value <2.2e-16;
one-sided Wilcoxon signed-rank test). Additionally, adding or delet-
ing edges decreased predictability, and deleting edges had a worse
effect than adding (adjusted P-values <2.2e-16 for normal-addition,
<2.2e-16 for normal-deletion and <2.2e-16 for deletion-addition;
F¼131; Tukey’s HSD post hoc test) (Supplementary Fig. S6).

Finally, we evaluated decoupleR’s speed and found that methods
run relatively fast in the R version, and orders of magnitude faster in
the Python one [median across methods of 1.44 and 0.44 ms per
sample and regulator in R and Python, respectively, with an Intel(R)
Core(TM) i7-8550U CPU @ 1.80 GHz; Supplementary Fig. S7], ena-
bling their use with larger datasets such as single-cell or spatial
omics.

5 Conclusion

In summary, decoupleR combines a variety of methods to infer bio-
logical activities into one efficient, robust, and user-friendly tool in
the two most used programming languages for omics data analysis.
With a common syntax for different methods, types of omics data-
sets, and knowledge sources available via OmniPath, it facilitates
the exploration of different approaches and can be integrated in
many workflows.

We observed that the majority of methods return adequate esti-
mates of regulator activities, but that their aggregation into a con-
sensus score and linear models perform better than other methods.
We welcome the addition of further methods by the community.
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Fig. 1. Inference of biological activities with decoupleR’s workflow. (A) decoupleR’s workflow, it contains a collection of computational methods that coupled with prior

knowledge resources estimates biological activities from omics data molecular readouts such as normalized counts or log fold changes. (B) Spearman correlation across meth-

ods and (C) predictive performance across methods in the RNA-seq data-set
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